Innovative Carbon-Doped Composite Pavements with Sensing Capability and Low Environmental Impact for Multifunctional Infrastructures

نویسندگان

چکیده

Recently, smart composites that serve as multi-functional materials have gained popularity for structural and infrastructural applications yielding condition assessment capabilities. An emerging application is the monitoring prediction of fatigue road infrastructure, where these systems may benefit from ability to detect estimate vehicle loads via weigh-in-motion (WIM) sensing without interrupting traffic flow. However, off-the-shelf WIM can be improved in terms cost durability, both on hardware software sides. This study proposes a novel pavement material utilized embedded system. The consists composite fabricated using an eco-friendly synthetic binder called EVIzero, doped with carbon microfiber inclusions. piezoresistive and, therefore, has strain-sensing Compared other existing materials, it not affected by polarization exhibits more rapid response time. evaluates capabilities according needs A tailored data acquisition setup distributed line electrodes developed detection moving loads. aim paper demonstrate newly proposed suitability system WIM. Results promising ready implemented field further validation real world.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules

Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...

متن کامل

DFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules

Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...

متن کامل

A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangula...

متن کامل

Integrating Environmental Science and the Economy: Innovative Partnerships between the Private Sector and Research Infrastructures

The present paper is a preliminary analysis of the funding, organizational culture, environmental, and innovation challenges that are currently faced by Environmental Research Infrastructures (ERI) and private enterprises working together. We contend there is a strong case for building creative collaboration models across these sectors that also require to new management tools to effectively ge...

متن کامل

Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of composites science

سال: 2021

ISSN: ['2504-477X']

DOI: https://doi.org/10.3390/jcs5070192